Resources On this page Resources Comprehensive collection of tools, examples, and learning materials for dspy-go.
Official Resources# Documentation# Examples# Core Examples# Quick Start# Advanced Features# Multimodal# Multimodal Processing - Image analysis and vision Q&AImage analysis with questions Vision question answering Multimodal chat Streaming multimodal content Multiple image comparison Optimizers# Agent Patterns# Agent Examples - Various agent implementationsReAct pattern Orchestrator pattern Memory management Production Applications# Maestro - Code Review Agent# GitHub: XiaoConstantine/maestro
A production code review and question-answering agent built with dspy-go. Demonstrates:
RAG pipeline implementation Tool integration (MCP) Smart tool registry usage Production deployment patterns Key Features# π Automated code review π¬ Natural language Q&A about codebases π§ MCP tool integration π Performance optimization with MIPRO Learning Materials# Video Tutorials# Coming soon! Check the GitHub repository for announcements.
Blog Posts & Articles# Introduction to DSPy - Original DSPy paperBuilding LLM Applications with Go (coming soon) Prompt Optimization Strategies (coming soon) Check GitHub Discussions for community-contributed examples and patterns.
Datasets# Built-in Dataset Support# dspy-go includes automatic downloading and management for popular datasets:
GSM8K - Grade School Math# import "github.com/XiaoConstantine/dspy-go/pkg/datasets"
// Automatically downloads if not present
gsm8kPath , err := datasets . EnsureDataset ( "gsm8k" )
dataset , err := datasets . LoadGSM8K ( gsm8kPath ) Use for: Math reasoning, chain-of-thought, optimization
HotPotQA - Multi-hop Question Answering# hotpotPath , err := datasets . EnsureDataset ( "hotpotqa" )
dataset , err := datasets . LoadHotPotQA ( hotpotPath ) Use for: Multi-step reasoning, RAG pipelines, complex Q&A
Custom Datasets# // Create in-memory dataset
dataset := datasets . NewInMemoryDataset ()
dataset . AddExample ( map [ string ] interface {}{
"question" : "What is the capital of France?" ,
"answer" : "Paris" ,
}) LLM Provider Setup# Google Gemini# export GEMINI_API_KEY = "your-api-key" β
Multimodal support (images) β
Fast responses β
Good for prototyping Get API Key β
OpenAI# export OPENAI_API_KEY = "your-api-key" β
GPT-4, GPT-3.5 β
Reliable performance β
Well-documented Get API Key β
Anthropic Claude# export ANTHROPIC_API_KEY = "your-api-key" β
Long context windows β
Strong reasoning β
Safety features Get API Key β
Ollama (Local)# # Install Ollama
curl -fsSL https://ollama.com/install.sh | sh
# Pull a model
ollama pull llama2
# Set base URL
export OLLAMA_BASE_URL = "http://localhost:11434" β
Free, local execution β
Privacy (no data leaves your machine) β
No API costs Install Ollama β
IDE Extensions# Testing & Debugging# // Enable detailed tracing
ctx = core . WithExecutionState ( context . Background ())
// Execute your program
result , err := program . Execute ( ctx , inputs )
// Inspect trace
executionState := core . GetExecutionState ( ctx )
steps := executionState . GetSteps ( "moduleId" )
for _ , step := range steps {
fmt . Printf ( "Duration: %s\n" , step . Duration )
fmt . Printf ( "Prompt: %s\n" , step . Prompt )
fmt . Printf ( "Response: %s\n" , step . Response )
} Monitoring# import "github.com/XiaoConstantine/dspy-go/pkg/logging"
// Configure logging
logger := logging . NewLogger ( logging . Config {
Severity : logging . DEBUG ,
Outputs : [] logging . Output { logging . NewConsoleOutput ( true )},
})
logging . SetLogger ( logger ) Get Help# Contributing# Stay Updated# MCP (Model Context Protocol)# DSPy Ecosystem# Compatibility Results# dspy-go maintains compatibility with Python DSPy implementations. See:
Parallel processing can improve throughput by 3-4x Smart Tool Registry adds < 50ms overhead Optimization times vary by optimizer (see Optimizers Guide ) Tips & Best Practices# Getting Started# β
Start with BootstrapFewShot optimizer β
Use clear, detailed field descriptions β
Test with small datasets first β
Enable logging during development Production Readiness# β
Use train/validation splits β
Monitor performance metrics β
Implement error handling β
Cache results where possible β
Use Parallel module for batches Optimization# β
Aim for 50+ training examples β
Balance dataset (don’t skew toward one class) β
Start simple, then optimize β
Validate on held-out data Next Steps#